SOME THEOREMS ON HOPFICITY

BY R. HIRSHON

1. **Introduction.** Let G be a group and let Aut G be the group of automorphisms of G and let End on G be the semigroup of endomorphisms of G onto G. A group G is called hopfian if End on G=Aut G, that is, a group G is hopfian if E0 onto itself is an automorphism. To put this in another way, G is hopfian if G is not isomorphic to a proper factor group of itself.

The question whether or not a group is hopfian was first studied by Hopf, who using topological methods, showed that the fundamental groups of closed two-dimensional orientable surfaces are hopfian [5].

Several problems concerning hopfian groups are still open. For instance, it is not known whether or not a group H must be hopfian if $H \subseteq G$, G abelian and hopfian and G/H finitely generated. Also it is not known whether or not G must be hopfian, if G is abelian, $H \subseteq G$, H hopfian, and G/H finitely generated [2]. On the other hand, G. L. S. Corner [3], has shown the surprising result, that the direct product G of an abelian hopfian group G with itself need not be hopfian.

Corner's result leads us to inquire: What conditions on the hopfian groups A and B will guarantee that $A \times B$ is hopfian? We shall prove, for example, in §3, that the direct product of a hopfian group and a finite abelian group is hopfian. Also we shall prove that the direct product of a hopfian abelian group and a group which obeys the ascending chain condition for normal subgroups (for short, an A.C.C. group) is hopfian (Theorems 3 and 5 respectively).

In §4 we examine various conditions on a hopfian group A which guarantee $A \times B$ is hopfian for groups B with a principal series. For example if the center of A, Z(A), is trivial or if A satisfies the descending chain condition for normal groups, (for short, A is a D.C.C. group) then $A \times B$ is hopfian.

Theorem 3 is equivalent to: The direct product of a hopfian group and a cyclic group of prime power order is hopfian. In seeking to generalize this result we note that the normal subgroups of a cyclic group $C_{p^{n+1}}$ of prime power order p^{n+1} form a chain and $C_{p^{n+1}}$ has exactly *n*-proper normal subgroups. We define an *n*-normal group as a group G with exactly *n*-proper normal subgroups such that the normal subgroups of G form a chain. Hence the simplest example of an *n*-normal group is $C_{p^{n+1}}$. (We only consider n finite.) We then consider in §5 the direct product $G = A \times B$ of a hopfian group A with an n-normal group B. In Theorem 16, we show that if G is not hopfian, several anomalies arise with respect to A. For instance if G is not hopfian we will show that there are infinitely many

homomorphisms of A onto B. We show that if B is 0-normal or 1-normal, $A \times B$ is hopfian.

In §6 we explore briefly the concept of super-hopficity. If all homomorphic images of A are hopfian, we say that A is super-hopfian. We show for example that if G is generated by a super-hopfian normal subgroup A and a normal subgroup B such that B has finitely many normal subgroups, then G is super-hopfian.

Unless otherwise stated, A will always designate a hopfian normal subgroup of G and T will designate an element of End on G. If $g \in G$, O(g) will designate the order of g, |G| will designate the cardinality of G. If $H \subseteq G$ and G is a positive integer, HT^{-f} will designate the complete pre-image of G under G.

Finally, the author expresses his appreciation to Professor Donald Solitar for his suggestion to pursue the study of hopficity, for his construction of *n*-normal groups and for his valuable suggestions and comments given in the formative stages of this paper.

2. Some general theorems. We begin with a result that shows us that in some cases it suffices to consider infinitely generated hopfian groups A.

THEOREM 1. If G is a group containing a hopfian subgroup N of index [G:N]=r, r finite, such that G contains only finitely many subgroups of index r, then G is hopfian.

Proof. Suppose $G \sim G/K$, $K \neq 1$. If under an isomorphism of G onto G/K, K corresponds to K_1/K , we see $G \sim G/K \sim G/K_1$. Repeating the procedure, we see there exists subgroups K_i , where K_i is a proper subgroup of K_{i+1} such that

$$G \sim G/K_i, \quad i \geq 0, K_0 = K.$$

Hence we may write $N \sim M_i/K_i$ so that $[G:N] = [G:M_i] = r$. Hence $M_i = M_j$ for some i and j with i < j. But then,

$$\frac{M_i/K_i}{K_i/K_i} \sim \frac{M_i}{K_i} = \frac{M_j}{K_i} \sim N \sim \frac{M_i}{K_i}$$

so that N is not hopfian.

The following corollaries follow quite easily:

COROLLARY 1. Let G be a group containing a hopfian normal subgroup N of index [G:N]=r (r not necessarily finite) such that G contains only finitely many normal subgroups of index r, then G is hopfian.

COROLLARY 2. If G is a finitely generated group containing a subgroup N of finite index, N hopfian, then G is hopfian.

COROLLARY 3. If A is finitely generated, and $|B| < \infty$, then $A \times B$ is hopfian.

LEMMA 1. If G/A is hopfian and if $AT \subseteq A$, then $T \in A$ ut G.

Proof. T induces an endomorphism of G/A onto itself in the obvious way. Since G/A is hopfian we conclude $AT^{-1}=A$ from which the conclusion easily follows.

THEOREM 2. Let A and G/A be hopfian and suppose one of the following holds:

- (a) $A \subseteq Z(G)$, G/A centerless,
- (b) A a periodic group, G/A torsion free,
- (c) A and G/A = B both periodic groups such that if $a \in A$, $b \in B$, then (O(a), O(b)) = 1.

Then G is hopfian.

Proof. Apply the previous lemma.

3. G/A an A.C.C. group.

THEOREM 3. If B is a finite abelian group then $G = A \times B$ is hopfian.

Proof. It suffices to assume that B is cyclic of prime power order, say, $|B| = p^n$ $B = \langle b \rangle$. Throughout this discussion and the next one, we will use symbols a, a_i to designate elements of A.

Suppose first for a given T, we have bT = a. Let $b^r a_1$ be a pre-image of b under T. Let $u = ba_1$ and let $v = ba^{-r+1}$. We may then verify,

$$G = \langle b \rangle \times A = \langle u \rangle A = \langle v \rangle \times A$$

and uT = v. Let $A^1 = \langle v \rangle T^{-1} \cap A$ so that $\langle v \rangle T^{-1} = \langle u \rangle A^1$. Hence,

$$A \sim (G/\langle v \rangle) \sim (G/\langle v \rangle T^{-1}) = (\langle u \rangle A)/(\langle u \rangle A^1) \sim A/A^1.$$

Hence $A^1 = 1$. Hence T is an isomorphism on A and without too much difficulty, one sees that $T \in \text{Aut } G$.

Now suppose $bT \notin A$, say $bT = b^q a$. If (q, p) = 1, we can find an automorphism S of G such that bTS = b, so that by Lemma 1, $TS \in Aut G$ and a fortiori, $T \in Aut G$. Hence we may assume $(q, p) \neq 1$.

If $aT \in A$ and if f_p designates the greatest power of p dividing the integer f then $bT^2 = b^r a_2$ where $r_p > q_p$. If $aT = b^s a_3$, and $aT \notin A$, and if $s_p \le q_p$, then for a suitable integer u, if $z = ba^u$, $zT \in A$ and $G = \langle z \rangle \times A$. If $s_p > q_p$ then $bT^2 = b^v a_4$ where $v_p > q_p$. Hence if $(q, p) \ne 1$, we see that we may find an element w of G, such that $G = \langle w \rangle \times A$ and $wT^i \in A$ for some integer i, $1 \le i < 2^n$. Hence T^i and T are automorphisms.

THEOREM 4. If A is abelian and B is finitely generated and abelian then $G = A \times B$ is hopfian.

Proof. By the previous theorem, we may assume $B = \langle b \rangle \sim C_{\infty}$.

By Lemma 1, if $A \subseteq AT^{-1}$ then $T \in \text{Aut } G$. Hence we may assume $A | (A \cap AT^{-1})$ is infinite cyclic, that is,

$$A = \langle a \rangle \times A \cap AT^{-1}$$
.

But $A/(A \cap AT)$ is contained isomorphically in G/AT which in turn is a homomorphic image of G/A. Hence we may write, $A = \langle a_1 \rangle A \cap AT$. Hence there is an element S, $S \in End$ on A which agrees with T on $A \cap AT^{-1}$ such that $aS = a_1$. It easily follows that $T \in Aut G$.

COROLLARY. If A is abelian and if B is finitely generated and B' the commutator group of B is hopfian then $A \times B = G$ is hopfian.

Proof. B'T = B' so that $B'T^{-1} = B'$ or else $(A \times B)/B' \sim A \times (B/B')$ is not hopfian.

COROLLARY. If Z(A) and A/Z(A) are hopfian and if B is a finitely generated abelian group, then $A \times B$ is hopfian.

Proof. $[Z(A) \times B]T^{-1} = Z(A) \times B$. Now apply the theorem.

We present here some general observations concerning T in relation to G/A, where G and T are arbitrary and G/A is an A.C.C. group. (A need not be hopfian in this discussion.)

We note T induces in a natural way, a homomorphism of G/AT^i onto G/AT^{i+1} . Since G/A is an A.C.C. group we see that ultimately all these homomorphisms are isomorphisms that is, for $s \ge r$

$$(AT^{s+j})T^{-j} = AT^s, \qquad j \ge 1$$

so that kernel $T^j \subset AT^s$. Hence

kernel
$$T^j \subset \bigcap_{s \geq r} AT^s$$
, $j \geq 1$.

It follows that a necessary and sufficient condition that $T \in \text{Aut } G$ is that T^i be an isomorphism on A for all $i \ge 1$. Moreover in seeking to prove that $T \in \text{Aut } G$ it is not restrictive to assume that, for $i \ge 1$ and $j \ge 1$,

(1)
$$G/AT^i \sim G/AT^{i+1}$$
, $(AT^{i+j})T^{-j} = AT^i$, kernel $T^j \subset AT^i$.

For if T does not obey the above conditions some power T_1 of T does and we could work with T_1 instead of T. We will assume (1) whenever it is convenient.

We now resume our convention that A is hopfian.

THEOREM 5. If every proper homomorphic image of A is abelian and B is an A.C.C. group then $G = A \times B$ is hopfian.

Proof. Deny. Then we may find T, T not an isomorphism on A such that the conditions (1) hold. Let,

$$G_1 = \operatorname{gp}(A, AT, AT^2, AT^3, \ldots).$$

Then $G_1T \subseteq G_1$, so that $G_1T^{-1} = G_1$. However $AT^i \subseteq Z(G)$, $i \ge 1$ because $G = AT^i \cap BT^i$ and AT^i is abelian. Hence $G_1 = A \times B_1$ where $B_1 \subseteq Z(B)$. Hence B_1 is finitely generated so that $A \times B_1$ is hopfian which implies T is an isomorphism on G_1 , a contradiction of our hypothesis.

COROLLARY. If A is abelian and B is an A.C.C. group, then $A \times B$ is hopfian.

In view of the last theorem, it might be of some interest to give an example of a hopfian group A, which is not an A.C.C. group and which is not abelian, but yet every proper homomorphic image of A is abelian. We proceed to do this.

DEFINITION. Let H be a group and F a group of automorphisms. We will say G is an extension of H by F, if G consists of elements fh, $f \in F$, $h \in H$, where multiplication in G is defined by

$$(f_1h_1)(f_2h_2) = (f_1f_2)(h_1^{f_2}h_2)$$

for $f_i \in F$ and $h_i \in H$, where $h_{1}^{f_2}$ is the image of h_1 under f_2 .

THEOREM 6. Let H be a simple group and let L be a hopfian group of automorphism of H. Furthermore, suppose

(2) $L \cap inner-automorphism H=1$.

Then if G is an extension of H by L then G is hopfian. In fact if L is super-hopfian, then G is super-hopfian.

Proof. If $N \triangle G$ and $N \ne 1$ then $H \subseteq N$, for if $H \cap N = 1$ the elements of H and N commute element-wise, which leads to a contradiction of (2). Hence, if $T \in End$ on G, by Lemma 1, $HT \ne 1$. Hence $H \subseteq HT$. But $HT \sim H$ since H is simple. Hence H = HT. By Lemma 1 again, $T \in Aut G$. If L is super-hopfian, every proper homomorphic image of G is a homomorphic image of L so that G is super-hopfian.

As an application, let H be the alternating group on an infinite countable set. Let p_i , $i=1, 2, 3, \ldots$, be a sequence of distinct primes. Then H has a group of automorphisms L which is the restricted direct product of cyclic groups of order p_i , $i=1, 2, \ldots$, and such that (2) holds. L is super-hopfian. Hence G is not an A.C.C. group, every proper homomorphic image of G is abelian and G is super-hopfian.

Somewhat along the lines of the previous theorem, we have

THEOREM 7. Let every proper normal subgroup of A be an A.C.C. group. Let every normal subgroup of B be an A.C.C. group. Then if $G/A \sim B$, then G is hopfian.

Proof. Deny. Suppose T is not an isomorphism on A and kernel $T \subseteq AT$. Hence

$$B_1 = (A \cdot AT)/A \sim AT/A \cap AT \sim A/A_1$$

Now B_1 is contained isomorphically in B as a normal subgroup. Hence A/A_1 is an A.C.C. group. But $A_1 \neq A$ or else $AT \subseteq A$ contradicting Lemma 1. Hence A_1 is an A.C.C. group. But then so is A and certainly then so is G implying that G is hopfian after all.

We now present some observations concerning the group G where G/A has finitely many normal subgroups.

Suppose G is not hopfian. Then we may choose T satisfying the conditions (1), T not an isomorphism on A. Moreover, we may choose positive integer r and k, r < k such that

$$A \cdot AT^{-k} = A \cdot AT^{-r} = L,$$

$$AT^{k} \cdot A = AT^{r} \cdot A = M.$$

Hence, $MT^{r-k} = M$, so that M is not hopfian. If G/A is finite, but G is not hopfian, we might begin by choosing [G:A] as small as possible so that if M is constructed as above, M = G. But then G/A is a homomorphic image of A. We may summarize part of the previous remarks as

THEOREM 8. The statement,

If A is hopfian and G|A is finite then G is hopfian is universally true if and only if the statement,

If A is hopfian and G|A is a finite homomorphic image of A, then G is hopfian, is universally true.

4. $A \times B$, where B has a principal series.

DEFINITION. We say that a group B may be cancelled in direct products if whenever

$$C \times B \sim C^1 \times B^1$$
 and $B \sim B^1$

then $C \sim C^1$ (for any C).

LEMMA 2. If B has a principal series, B may be cancelled in direct products.

Proof. See [4].

THEOREM 9. If B has a principal series, a necessary and sufficient condition for $A \times B$ to be hopfian is that $AT \cap BT = 1$ for arbitrary T of End on $(A \times B)$.

Proof. The necessity part of the theorem is clear. Now suppose that $AT \cap BT = 1$ for any $T \in \text{End}$ on $(A \times B)$. By the remarks preceding (1), we can choose r > 0 such that

kernel
$$T^j \subset AT^s$$
 for $j \ge 1$ and $s \ge r$,

where r depends on T. By hypothesis, $AT^r \cap BT^r = 1$ so,

$$A \times B = AT^r \times BT^r$$
.

Hence if K=kernel $T^r \cap B$, then

$$B/K \sim BT^r$$
 and $A \times (B/K) \sim (AT^r/K) \times BT^r$.

Hence by Lemma 2 we see $A \sim AT^r/K$. It follows without difficulty that T^r and T are automorphisms.

COROLLARY 1. If B has a principal series, then a sufficient condition for T to be an automorphism, for T in End on $(A \times B)$, is

$$AT^i \cap BT^i = 1, \quad i \ge 1.$$

COROLLARY 2. A sufficient condition for $T \in \text{Aut}(A \times B)$ is kernel $T^i \subset A$, $i \ge 1$ (where B has a principal series).

COROLLARY 3. If G has a principal series and if $T \in \text{End}$ on $(A \times B)$, and if $AT \cap BT = 1$, and if kernel $T \cap B \subseteq AT$ then T is an automorphism.

THEOREM 10. If B has a principal series and if there are only finitely many possible kernels for homomorphisms of A into normal subgroups of B, then $A \times B$ is hopfian.

Proof. Choose T obeying the conditions (1). Then write,

$$A \cdot AT^k = A \times B_k, \qquad k \ge 1, B_k \triangle B.$$

The above gives rise to a homomorphism of A onto B_k , whose kernel is $A \cap AT^{-k}$. Hence we have for say 0 < r < s,

$$A \cap AT^{-r} = A \cap AT^{-s}$$
.

Hence, $AT^s \cap AT^{s-r} = AT^s \cap A$, so that kernel $T^i \subset A$, $i \ge 1$ and we may apply Corollary 2, of the previous theorem.

COROLLARY 1. If B is finite and A has only finitely many normal subgroups A_* such that $[A:A_*]$ is a divisor of [B:1], then $A \times B$ is hopfian.

COROLLARY 2. If B has a principal series and if there are only finitely many homomorphisms of A into B, then $A \times B$ is hopfian.

LEMMA 3. Let B be a group with a principal series. Let P be a property of groups such that:

- (a) A has a nontrivial normal group A_{\pm} such that A/A_{\pm} has property P.
- (b) If A has property P, then $A \times B$ is hopfian.
- (c) If $A^*\triangle A$ and A/A^* has P and if $T \in \text{End}$ on $(A \times B)$, then $A/(A^* \cap A^*T^j)$ has property P for all integers j.
- (d) A satisfies the descending chain condition for normal subgroups A^* such that A/A^* has property P.

Then $A \times B$ is hopfian.

Proof. Choose a minimal normal group A^* such that $A^* \neq 1$ and A/A^* has property P. Then we may assume $A^*T^j \cap A^* = A^*$ for any j so that $A^*T^{-j} = A^*$ for $j \geq 0$. Now apply Corollary 2 of Theorem 9.

THEOREM 11. Suppose either

(a) B is finite, and A satisfies the descending chain condition for normal subgroups of finite index, or

- (b) B has a composition series and A satisfies the descending chain condition for normal subgroups A^* such that A/A^* has a composition series, or
- (c) B has a principal series and A satisfies the descending chain condition for normal groups A^* such that A/A^* has a principal series.

Then $G = A \times B$ is hopfian.

Proof. For instance, for (c) take P the property of having a principal series. Let A/A^* have property P. Let

$$H = A/A_1, \qquad E = A^*/A_1, \qquad F = A/A^*$$

where $A_1 = A^*T^j \cap A^*$. One can show E obeys the ascending and descending chain conditions for normal subgroups of H, that is any ascending or descending chain of subgroups of E which are normal in H terminates. It follows that H has a principal series.

COROLLARY. If A is a D.C.C. group, and if B has a principal series, then $A \times B$ is hopfian.

THEOREM 12. If A satisfies the ascending chain condition for normal nonhopfian subgroups, and if B has a principal series, then $G = A \times B$ is hopfian.

Proof. Deny. Choose T satisfying the conditions (1), but T not an isomorphism on A. Let,

$$A_i = \bigcap AT^{q\cdot 2^i}, \qquad i = 0, 1, 2, \dots$$

where q ranges over all integers. Then $A_iT^{2^i}=A_i$ so that the A_i are nonhopfian. Hence we may find j so that $A_j=A_{j+1}$. Hence $A_{j+1}T^{2^j}=A_j$. It follows that kernel $T^i \subset A$, $i \ge 1$. Now apply Corollary 2 of Theorem 9 to obtain a contradiction.

In view of the former result, it might be interesting to give an example of a hopfian group G such that G contains a normal nonhopfian subgroup and such that G obeys the ascending chain condition for normal nonhopfian subgroups. (The example we give will be of special interest in Theorem 18.)

Let p be a prime and K be the field with p elements. Let m be an integer, $m \ge 3$. Let SL(m, K) be the group of nonsingular, unimodular, linear transformations of a vector space V of dimension m over K. Let

$$PSL(m, K) = SL(m, K)|Z$$

where Z = center of SL (m, K).

Lemma 4. Z is the subgroup of diagonal linear transformations of SL(m, K) i.e., Z consists of those transformations T which have the form

$$xT = \lambda x$$
, $\lambda^m = 1$ for all $x \in V$.

Also, PSL(m, K) is simple.

Proof. This is a special case of a more general result. See [6].

Now let $\langle a_i \rangle$ be a cyclic group of order $p, i=1, 2, 3, \ldots$ Let G be the restricted direct sum of the $\langle a_i \rangle$. Let G_r be the direct sum of the groups $\langle a_i \rangle$ for $1 \le i \le r$ and let G^r be the restricted direct sum of the groups $\langle a_i \rangle$ for i > r. Hence G is the direct sum of G_r and G^r . Now let F_* be the set of automorphisms T of G such that there exists an r such that T fixes the group G_r , that is $G_rT = G_r$, and such that T is the identity map on G^r , i.e., if $x \in G^r$, xT = x. One can see that F_* is a group of automorphisms of G. Now if $T \in F_*$ we may choose r such that $G_rT = G_r$ and T is the identity on G^r . Now on G_r , T acts as a linear transformation and we define |T| as the determinant of the matrix representing T on G_r . It may be verified that |T| is well defined, and independent of r. Now let F be the subgroup of F_* of those transformations T, with |T|=1. We claim that F is simple. To see this let F_n be those elements T of F such that $G_{p^n}T = G_{p^n}$, and T the identity on G^{p^n} . We see F is the union of the F_n . Since the union of an ascending sequence of simple groups is simple, we need only show that the groups F_n are simple. However one can see that $F_n \sim SL(p^n, K)$ and since $\lambda^{p^n} = \lambda$ in K, $SL(p^n, K)$ has no center and so is simple by the previous lemma.

Now let M be the extension of the group G by F. One sees that if g_1 and g_2 are elements in G, $g_1 \neq 1$, $g_2 \neq 1$, there exists $T \in F$ such that $g_1T = g_2$. One can now see that G is the only normal subgroup of M so that certainly M is hopfian and has a nonhopfian normal subgroup, namely G, and M obeys the ascending chain condition for normal nonhopfian groups.

LEMMA 5. Let $C \triangle G$ and suppose that C has finitely many normal subgroups. If $T \in \text{End}$ on G, then either $C \cap CT^i = 1$ for all positive i sufficiently large, or we can find C^* , $C^* \subseteq C$, $C^* \triangle G$, $C^* \ne 1$, and a positive integer j such that $C^*T^j = C^*$.

Proof. If $C \cap CT^i \neq 1$, for all *i* sufficiently large, we may find positive integers r and s, r < s, and normal groups C_* and C^* of C such that if u is either r or s,

$$CT^u \cap C = C_{\star}T^u = C^* \neq 1.$$

Hence if j=s-r, $C^*T^j=C^*$.

We note at this point that if A is hyper-hopfian, that is if every normal subgroup of A is hopfian, then certainly Theorem 12 guarantees $A \times B$ is hopfian if B has a principal series. For instance if the groups M_i are torsion-hyper-hopfian groups such that elements m_i , m_j of M_i and M_j respectively, $i \neq j$, have relatively prime orders, then the restricted direct product of the M_i is hyper-hopfian. In particular one may choose the M_i to be finite groups.

THEOREM 13. If $A \times B$ is not hopfian and B has a principal series, then there exists a homomorphic image C of B such that $A \times C$ is not hopfian, and $Z(C) \neq 1$, and if T is an arbitrary element of End on $(A \times C)$, then T is an isomorphism on C. Also if $C_1 \triangle C$, $C_1 \neq 1$, then $A \times (C/C_1)$ is hopfian. Furthermore, if B has finitely many normal subgroups, and $A \times B$ is not hopfian, we can find C with the former

properties, and in addition with the property that if $T \in \text{End}$ on $(A \times C)$, $T \notin \text{Aut}(A \times C)$, then $CT^i \cap C = 1$, for all positive i sufficiently large.

Proof. Choose a group C, C a homomorphic image of B, with the number of terms in a principal series for C minimal with respect to $A \times C$ being nonhopfian. This guarantees that for all $T \in \text{End}$ on $(A \times C)$, T is an isomorphism on C and $A \times C/C_1$ is hopfian if $C_1 \neq 1$. Furthermore, since $A \times C$ is not hopfian, we may choose $T \in \text{End}$ on $(A \times C)$ so that $AT \cap CT \neq 1$. Hence $Z(CT) \sim Z(C) \neq 1$. Furthermore if B has finitely many normal subgroups, so does C so that if T is any element of End on $(A \times C)$, $T \notin \text{Aut } (A \times C)$, then $CT^i \cap C = 1$ for all i sufficiently large or else we could choose C^* as in the previous lemma and $A \times (C/C^*)$ would not be hopfian.

COROLLARY. Suppose A cannot be written in the form

(3)
$$A = A_1 \cdot A_2, A_i \triangle A, A_i \neq A, i = 1, 2,$$
$$A_1 \text{ and } A_2 \text{ commute elementwise, } A_1 \text{ a homomorphic image of } A, Z(A_2) \neq 1.$$

Then if B has finitely many normal subgroups, $A \times B$ is hopfian. Moreover, if the homomorphic images of A are indecomposable as a direct product, then $A \times B$ is hopfian. Finally if B is fixed, and A cannot be written in the form (3) with the additional stipulation that A_2 be a homomorphic image of B, then $A \times B$ is hopfian.

Proof. If $A \times B$ is not hopfian, choose C as in the previous theorem and $T \in End$ on $(A \times C)$, $C \cap CT = 1$, and T not an isomorphism on A. Let $N = CT^{-1}$ so that $(A \times C)/N \sim A$ so that we may take $A_1 = (AN)/N$, and $A_2 = (CN)/N \sim C$. If A is written in the form (3), then $A/A_1 \cap A_2 = A_1/A_1 \cap A_2 \times A_2/A_1 \cap A_2$.

THEOREM 14. If $Z_0 = 1$ and $Z_{n+1}/Z_n = Z(A/Z_n)$, $n \ge 0$, and A/Z_n and its center are hopfian for all $n \ge 0$, then if B has a principal series, $A \times B$ is hopfian.

Proof. Deny. Choose a group E with a principal series and an integer $r \ge 0$, such that $H = A/Z_r \times E$ is not hopfian and $\triangle(E) = \text{length of a principal series}$ for E is minimal. That is, if $A/Z_q \times D$ is not hopfian, and if D has a principal series, then $\triangle(E) \le \triangle(D)$. Consequently, the group C we may associate with E, by the previous theorem, is E itself, so $Z(E) \ne 1$. If $T \in \text{End on } H$, but $T \notin \text{Aut } H$, we see from the minimality of $\triangle(E)$ that

$$Z(H)T^{-1} = Z(H) = Z_{r+1}|Z_r \times Z(E).$$

However, Z(E) is finite and this contradicts Theorem 3.

COROLLARY. If Z(A)=1, and if A is hopfian and B has a principal series, then $A \times B$ is hopfian.

5. $A \times B$, B n-normal. We begin by giving some examples of n-normal groups. As we have mentioned, we have the groups C_t , $t=p^{n+1}$, p a prime. Or if F is a

simple group and B is an n-normal group of automorphisms of F, such that B does not contain any inner-automorphism (different from 1), then the extension of F by B is n+1 normal. In particular, if $B \sim C_{p^n}$, p a prime, we can find a prime q, $q=1 \mod p^n$ so that C_q has a group of automorphisms, B, and extending C_q by B gives us a nonabelian n-normal group. Similarly if H is the alternating group of arbitrary infinite cardinality, and if $R \in \text{Aut } H$, $O(R) = p^n$, and if $R \in \text{Aut } H$, or on inner-automorphism except 1, if we extend $R \in \text{Aut } H$ by $R \in \text{Aut } H$ by R

Until further notice, B shall represent an n-normal group, with normal subgroups,

$$1 = B_0, B_1, \ldots, B_n, B_{n+1} = B, B_i \subset B_{i+1}.$$

LEMMA 6. If $T \in \text{End on } G$, $G = A \times B$, $T \notin \text{Aut } G$, then $G = A \cdot AT$ and $B \cdot AT$ is a proper subgroup of G.

Proof. Either $A \cdot AT \subset B \cdot AT$ or $B \cdot AT \subset A \cdot AT$. Hence all we need show is that $A \cdot AT$ is not a subgroup of $B \cdot AT$. But if $A \cdot AT \subset B \cdot AT$, then $G = B \cdot AT$ and hence $A \sim AT/B \cap AT$, from which we could easily deduce that $T \in Aut G$.

LEMMA 7. Suppose $T \in \text{Aut } G$, and $AT \cap BT = B_iT$ where kernel $T \cap B = B_k \subseteq B_i$. Then if $B \cap AT = B_i$, then j > i.

Proof. Use the previous lemma to see that B/B_i is contained isomorphically as a proper normal subgroup of $G/AT \sim B/B_i$.

LEMMA 8. If $BT \sim B$, then $AT \cap BT \neq 1$.

Proof. Deny. Then $G = A \times B = AT \times BT$. By the previous lemma, $B_k \subseteq AT$. But then Corollary 3 of Theorem 9 implies that $T \in \text{Aut } G$.

THEOREM 15. A necessary and sufficient condition that $T \in \text{Aut } G$ is $AT \cap BT = 1$.

Proof. The previous lemma and Lemma 2.

In our next theorem, we show that if $A \times B$ is not hopfian A must enjoy several anomalous properties.

THEOREM 16. Suppose $G = A \times B$ is not hopfian. Then,

- (1) There exists infinitely many homomorphisms of A onto B. Also there exist normal subgroups of $A \times B$, R^* , R, R, R^i , $i \ge 0$ such that
- (2) $R^* \subseteq R^{i+1} \subseteq R^i$, $R^0 = R_0$, $R_i \subseteq R_{i+1} \subseteq R$ for all i.
- (3) $R^* = \bigcap R^i$, $R = \bigcup R_i$, where the intersection and union are taken over all $i \ge 0$. Also the containments in (2) are proper.
 - (4) The R^i are subgroups of A.
 - (5) R* and R are not hopfian.
- (6) $R^i/R^{i+1} \sim R^j/R^{j+1} \sim R_1/R_0 \sim a$ normal subgroup of B for all i and j, and $R^i/R^* \sim R^j/R^*$ for all i and j.
- (7) $R_{i+1}/R_i \sim R_{j+1}/R_j \sim a$ normal subgroup of a proper homomorphic image of B, $i \ge 1$, $j \ge 1$ and

- (8) There exist normal subgroups $A_i \subseteq A$, $i = 1, 2, ..., A_i \subseteq A_{i+1}$ properly, such that $A_{i+1}/A_i \sim R_2/R_1$ for all i.
- (9) There exist normal subgroups K_i , $K_i \subset K_{i+1}$, $i \ge 0$, such that if $L = \bigcup K_i$, then L is nonhopfian, and

$$R_i/K_i \sim R_{i+j}$$
, $R_i/L \sim R_i/L$, $K_{i+j}/K_i \sim K_i$ and $L/K_i \sim L$.

Proof. Let $T \in \text{End}$ on G, $T \in \text{Aut } G$. Then by Lemma 6, $A \cdot AT^{j} = G$ for all j > 0, which implies $A \cdot AT^{-j} = G$ for j > 0. Hence $A/A \cap AT^{-j} \sim B$ and one may show (as in Theorem 10) that if the groups $A \cap AT^{-j}$, $j = 1, 2, 3, \ldots$ are not distinct, then T is an automorphism.

Now let us assume, without loss of generality, that T satisfies the condition (1), and that $AT^r \cap BT^r = B_iT^r$ for all $r \ge 1$ (for some fixed $i, i \ge 1$) and that i is maximal in the sense that if

$$B_u T^q \subset A T^q \cap B T^q$$
 for some $q \ge 1$, then $u \le i$.

(For if T does not obey these conditions, some power of T does, and we could then work with this power of T.)

Now we define,

$$R_j = \bigcap_{i \geq j} AT^i$$
 $j \geq 0, R = \bigcup_{j \geq 0} R_j$.

With the aid of (1), we see $R_iT=R_{i+1}$ so that RT=R, and $R\neq 1$, since kernel $T\subseteq R$. Moreover, the groups R_j are all distinct, for if say $R_m=R_{m+1}$, then $R_j=R_m$ for j>m and hence $R=R_m$. But then with the aid of Lemma 7, we see $B_{i+1}\subseteq R_1\subseteq R$. Hence,

$$A \cdot R = A \times B_{c}, \quad s > i.$$

Hence, $(A \cdot R)T^m = AT^m \cdot RT^m = AT^mR = AT^m = AT^m \cdot B_sT^m$ so that $B_sT^m \subset BT^m \cap AT^m$, a contradiction of the maximality of *i*.

We now define

$$R^0 = R_0$$
 and $R^{n+1} = R^n T^{-1} R_0$, $n \ge 0$.

By induction and the previous lemma, we see that R^{n+1} is a proper subgroup of R^n and $R^n = \bigcap AT^j$ where j ranges over all integers $\ge -n$ for each $n \ge 0$. Moreover if we consider the homomorphism of R^n onto R^{n-1} , induced by T for $n \ge 1$, we see that the preimage of R^n is exactly R^{n+1} so that

$$R^n/R^{n+1} \sim R^{n-1}/R^n, \qquad n \ge 1.$$

Furthermore, if we consider the homomorphism of $R^0 = R_0$ onto R_1 induced by T, we see that the preimage of R_0 is exactly R^1 so that $R^0/R^1 \sim R_1/R_0$.

Now one may see that R_1/R_0 is isomorphic to a normal subgroup of $AT/A \cap AT \sim B$. Also with the aid of (1) we see,

$$R_{i+1}/R_i \sim R_{i+2}/R_{i+1}, \quad j > 1.$$

Furthermore, R_2/R_1 is isomorphic to a normal subgroup of $AT^2/AT \cap AT^2 \sim B/B_i$.

If $A_k = R_k \cap A$, ultimately the A_k are distinct and by a suitable reindexing, the A_k may be seen to have the properties asserted in the Theorem. One may verify the remaining assertions by taking $K_j = \text{kernel } T^j$, $j \ge 1$, and $L = \bigcup_{j \ge 1} K_j$, and by noting that $R^*T^{-1} = R^*$.

COROLLARY. If |B| > |A|, then $A \times B$ is hopfian.

Proof. B cannot be a homorphic image of A.

We now find some particular values of n for which $A \times B$ is hopfian.

LEMMA 9. If $|B| = p^{n+1}$, p a prime, then $B \sim C_p^{n+1}$.

Proof. Use induction on n, and the fact that $Z(B) \neq 1$.

LEMMA 10. If $T \in \text{End}$ on $(A \times B)$ and $BT \subseteq A$ and $B \subseteq AT$, then T is an isomorphism on A.

Proof. $AT = B \times A \cap AT$ and $A = BT(A \cap AT)$. These two decompositions give rise to a homomorphism S of AT onto A such that S agrees with T on B and S is the identity on $A \cap AT$.

LEMMA 11. Let k be the least integer, $k \ge 0$ (if one exists), such that $A \times B$ is not hopfian for some A and for some k normal group B. Then if $T \in \text{End}$ on $(A \times B)$, $T \notin \text{Aut}(A \times B)$, then $B \cap BT = 1$ and T is an isomorphism on B.

Proof. Deny. Then $B_1T \subset B_1$ and $A \times B/B_1$ is not hopfian, which contradicts the minimality of k if $B_1 \neq B$, or the hopficity of A if $B_1 = B$.

THEOREM 17. If B is n-normal, $0 \le n \le 1$, then $A \times B$ is hopfian.

Proof. Let k be as in the last lemma, $A \times B$ not hopfian, B k-normal. We will show $k \ge 2$. Let $T \in \text{End}$ on $(A \times B)$, T not an isomorphism on A. Let $A \cdot BT = A \times B_r$, $B \cdot AT = (B_q T)(AT)$, $AT \cap BT = B_i T$, $B \cap AT = B_j$ where $1 \le i < j$. Using Lemma 11 we see B_r , B_q and B_i are central groups of B and hence are cyclic p groups for some prime p. Furthermore, we see $A \cap BT = (B_{k-r+1})T$ and $B/B_j \sim B_q/B_i$, $B/B_{k-r+1} \sim B_r$, q = k + i - j + 1. Hence we must have,

$$i > r$$
, $i > q$, $k-r+1 > q$, $k-r+1 > r$

or otherwise B would be a finite p group and hence B would be cyclic, a contradiction of Theorem 3. In summary we have,

$$0 \le r < \frac{k+1}{2} \le \frac{k+i}{2} < \frac{k+i+1}{2} < j \le k+1.$$

And with the aid of Lemma 10, we see $1 \le i < j - r \le k$. Hence we see k = 0 or 1 is impossible.

COROLLARY 1. If $C = D \cdot E$, $D \triangle C$, $D \cap E = 1$ where D and E are simple, then $A \times C$ is hopfian.

Proof. Either C is 1-normal or $C \sim D \times E$.

COROLLARY 2. If B is 2-normal and if $T \in \text{End on } (A \times B)$, T not an automorphism, then $B \subseteq AT$, $A \cap BT = B_2T$, $B/B_2 \sim B_1 \sim C_p$ for some prime p and $B_1 = Z(B)$.

COROLLARY 3. If r is a positive integer, then $A \times symmetric$ (r) is hopfian.

Proof. Symmetric 4 is 2-normal and centerless. If $r \neq 4$, symmetric r is 1-normal.

COROLLARY 4. If B is a group such that B has exactly one normal group in a principal series, i.e., B has a principal series of the form 1, B_* , B, then $A \times B$ is hopfian.

Proof. Either B is 1-normal or B is the direct product of simple groups.

COROLLARY 5. If $G = A \times B$, B n-normal and if BT is i-normal, i = 0 or 1, then $T \in \text{Aut } G$.

Theorem 18. Let E be a class of hopfian groups such that any hopfian group is isomorphic to a unique group of E. Then there exists a class E_* of hopfian groups such that:

- (a) E and E_* have the same cardinality.
- (b) No two distinct groups of E_* are isomorphic.
- (c) Any hopfian group is contained isomorphically as a normal subgroup of some group in E_* .
 - (d) Every group in E_* has a nonhopfian normal subgroup.

Proof. Let E_* be the set of groups which is formed by taking the direct product of groups in E with the group M of the example following Theorem 12, i.e. $E_* = \{(A \times M)/A \in E\}.$

Our assertions follow from the previous theorem, the definition of M and Lemma 2.

6. Super-hopficity. We terminate this paper with an investigation of the concept of super-hopficity. For an illustration of super-hopficity, we note that the restricted direct product of periodic super-hopfian groups M_i , such that $(O(m_i), O(m_j)) = 1$ for $m_i \in M_i$, $m_j \in M_j$, $i \neq j$, is super-hopfian. In particular, the M_i might be chosen as finite groups.

We no longer assume that B designates an n-normal group.

LEMMA 12. Let A be super-hopfian and let $H = A \cdot B$, $A \triangle H$, $B \triangle H$. Suppose $T \in \text{End}$ on H and $B \subseteq R$, $R \triangle H$ and $RT \subseteq R$. Then $RT^{-1} = R$.

Proof. If $RT^{-1} \neq R$, H/RT^{-1} is a homomorphic image of A, but H/RT^{-1} is not hopfian.

COROLLARY. If H and T are as in the lemma, and if r > 0 and if L_r is the subgroup of H generated by the groups BT^{tr} , $i \ge 0$, then $L_rT^{-r} = L_r$.

LEMMA 13. If H and L_r and T are as in the preceding corollary and if $B \cap BT^{tr} = 1$ for fixed r and for all $i \ge 1$, then B abelian.

Proof. Since $L_rT^r = L_r$, L_r is generated by the groups BT^{ir} , $i \ge 1$, and B commutes element-wise with each BT^{ir} , $i \ge 1$. Hence $B \subseteq Z(L_r)$.

THEOREM 19. Let $H = A \cdot B$ where $A \triangle H$ and $B \triangle H$ and where A is super-hopfian. Suppose B satisfies any one of the following conditions:

- (a) B is a finitely generated A.C.C. group.
- (b) B has finitely many normal subgroups or,
- (c) B is an A.C.C. group and if B_* is any homomorphic image of B and if $B_1 \triangle B_*$ and $B_2 \triangle B_*$ and if $B_1 \sim B_2$ then $B_1 = B_2$.

Then H is super-hopfian.

Proof. It suffices to prove H is hopfian since any homomorphic image of H satisfies the same hypothesis as H in any of the three situations. Let us assume that (a) holds. Let $T \in \text{End}$ on H. In the notation of the corollary to Lemma 12, we have $B \subseteq L_1 = L_1 T$ and $L_1 T$ is generated by the groups BT^i , $i \ge 1$. Hence, since B is finitely generated, we can find r such that

$$B \subseteq BT \cdot BT^2 \cdot \cdot \cdot BT^{r-1}BT^r = E$$
.

Hence,

$$BT \subseteq BT^2 \cdot BT^3 \cdot \cdot \cdot BT^r \cdot BT^{r+1} = ET$$
.

Consequently, $E \subseteq ET$ and hence,

$$ET^{i} \subset ET^{i+1}, \qquad i \geq 0.$$

Now since B is an A.C.C. group, so is BT^i , $i \ge 0$, and hence so is E. Consequently, T is an isomorphism on ET^i for all i sufficiently large and positive. However, L_1 is the union of the groups ET^i , $i \ge 1$. Hence in view of (4), we see T is an isomorphism on L_1 . But from the corollary to Lemma 12, $L_1 = L_1T^{-1}$ and so T is an automorphism.

Now suppose the assertion of (b) is false and choose a counterexample $A \cdot B = H$ so that B has the fewest number of normal subgroups among all possible counterexamples. Let $T \in \text{End}$ on H, T not an isomorphism on A. Then we can find r > 0 such that $B \cap BT^i = 1$ for all $i \ge r$ or else by Lemma 5, we can find j > 0 such that $B_*T^j = B_*$ for some normal subgroup, B_* of B, $B_* \ne 1$. Furthermore, T^j is an isomorphism on B because of the "minimality" of B. Hence,

$$H/B_* = [(AB_*)/(B_*)](B/B_*)$$

is not hopfian, which contradicts the "minimality" of B. Hence r exists as asserted, and so we see from Lemma 13 that B is abelian. Hence B is finite. This contradicts part (a) of our theorem.

Finally for (c) we may proceed by denying that G is hopfian. Hence we may choose B^* and A^* such that $H^* = A^* \cdot B^*$, $A^* \triangle H^*$, $B^* \triangle H^*$, A^* super-hopfian, B^* a

homomorphic image of B, H^* not hopfian, and such that if $H_1 = A_1 \cdot B_1$, A_1 superhopfian, B_1 a proper homomorphic image of B^* , then H_1 is hopfian.

Choose $T \in \text{End}$ on H^* , T not an isomorphism on A^* . Note T^i must be an isomorphism on B^* for $i \ge 1$. Now if $B^* \cap B^*T^j \ne 1$ for some $j, j \ge 1$, we may write $B_* = B_2T^j$, $B_* \subseteq B^*$, $B_* \ne 1$, $B_* \ne B_2$ (or else G/B_* is not hopfian, etc.) but $B_* \sim B_2$, a contradiction of our hypothesis. Hence, $B^* \cap B^*T^j = 1$ for $j \ge 1$, so that B^* is abelian and finitely generated, a contradiction of part (a) of our theorem.

REFERENCES

- 1. G. Baumslag and D. Solitar, Some two generator one relator non-hopfian groups, Bull. Amer. Math. Soc. 68 (1962), 199-201.
- 2. G. Baumslag, "Hopficity and Abelian groups," in *Topics in abelian groups*, Scott, Foresman and Co., Chicago, Ill., 1963, pp. 331-335.
- 3. A. L. S. Corner, Three examples on hopficity in torsion-free abelian groups, Acta Math. 16 (1965), 303-310.
 - 4. R. Hirshon, On cancellation in groups, Amer. Math. Monthly (to appear).
- 5. W. Magnus, A. Karras and D. Solitar, Combinatorial group theory, Interscience, New York, 1966, p. 415.
 - 6. J. Rotman, The theory of groups, Allyn and Bacon, Boston, Mass., 1965, p. 158.

POLYTECHNIC INSTITUTE OF BROOKLYN, BROOKLYN, NEW YORK